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@ Building sustainable design background

»Energy use in buildings accounts for about 92.7% of all electricity
consumption according to statistics published in 2013

»People spend about 80% to 90% of the time on indoor activities
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@ Building sustainable design technologies

O To keep indoor environment
comfortable while achieve energy
saving, passive or active building
designs can be adopted:

(] Passive design use ambient
energy sources, including
daylighting, natural ventilation,
and solar radiation.

L Active design use or create
purchased energy to keep the

building comfortable.

 Hybrid design use both energy
SOurces
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Building sustainable strategies from early
design stages
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@ Passive architectural design in green building
rating tools
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Building Passive architectural design
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Statistical analysis of Passive architectural
design strategies
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@ Passive architectural design case study
buildings

» Over 90% of the population in HK lives in high-rise domestic buildings of
10 to 40 floors

» Public Rental Housing (PRH) provided accommodations for over 30% the
local residents




4R Importance of different building design
Q'l“/b fac"?ors on building energy consgmpti%n
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Q/'gllb Multi-objective building optimization
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Q%b Nano-paints for window heat insulation
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Buildings emitted 8.3 Gt
carbon dioxide each year
accounting for more than
30% of the greenhouse
gas emissions in many
developed countries.

« 2015/16 HKSAR Government ITF (UICP): Development of Novel High
Dispersed Transparent Heat Insulation Paints for Glass (UIM/265)

Windows or curtain walls, taken as the day-
lighting structure of a building, is still
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Q@b Our ongoing ITF project

Novel High Dispersed Transparent Heat Insulation Paints for Glass

Problems for traditional coating

1. High cost (Foreign monopoly)
2. Bad transparence (Poor dispersion)
3. Solvent based coating (Environmental problems)

Project Objective

1.  Independent research to reduce the cost (Break up foreign monopoly)
2. Good transparence (Stable colloid)
3. Water based coating (Environmentally friendly )
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Thermal insulation coating
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Thermal insulation coating

» ATO-Graphene

Ball mill

Graphene
} Hydrothermal reactor

Precursor of ATO

. B

1. Good dispersion, no sediment

2. Secondary particle size (in
water): <150nm

4D . . .
3. Primary particle size: <30nm
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Q&!b Thermal insulation coating

N:anr:l%ﬁgs()f Tr\zilnss-,rlaligsgit)n Tr!r?:r_nl ?srs];[on UV-Light Transmission
) 73 28 13
> 85 24 8
3 70 30 14
4 33 27 11
6 75 25 2
7 87 22 /
9 D) o)) 12

Insulation Performance of the Coating:

® Vis-Light Transmission: >75%
® [R-Light Transmission: <30%
® UV-Light Transmission:<15%




Self-cleaning coatings
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Super-hydrophilic, 0(clean glass)<10° Super-hydrophilic self-cleaning glass



L_ow-cost self-cleaning nano-coating for
curtain walls

Building Products & ~ ~ —
Technologies Category
B RS

Merit Award it §2

Highly Dispersed
Screen-printable
Nanocomposite paste for
S 4 kG self<cleaning curtain walls
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nano-coating

Conventional self-cleaning glass curtain
wall involves chemical vapour
deposition and sputtering technologies.

A comparison between PV modules with
and without self-cleaning coatings after
one month’s outdoor exposure.
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Q@b Building-integrated solar PV systems

 Natural ventilated PV facade (experimental and numerical)
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% Solar cell development and installation
QP orientation optimization

* Optimal installation orientation of PV modules
* Development of solar cells and PV product, etc.
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@Ventilated BIPV and new modules

1- double glass a-Si PV module

2- air inlet louver

3- air outlet louver

Air outlet
louver
T
!

Hollow a-Si : ﬂ 4- air-flow duct
PV modules :
0 | | 10| 4 || 6 5- sandwich insulation board
: ﬂ 6- inward opening window
Doiblesiasse (i | fpoiagnd ' 7- connect and support bar
8- ceiling
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The overall energy performance of BIPV facade:
* real-time power generation performance

e thermal performance

e natural lighting performance




R Rooftop solar photovoltaic applications in
Qi‘/b Hong Kpong P PP

Sun light

Back row of P\

Bl.lildillg stock Front row of
PV module

ground floor area H
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_ floor area vs.
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Architectural &
Solar suitability

» Evaluating the PV-suitable
roof-top areas by using
remote sensing imagery;
Rooftop extraction from
remote sensing imagery 1s
employed to estimate the
utilization rate of urban roofs




Thermal performance of ground-source heat
pumps

Simulation and experiments
of vertical and inclined
boreholes

Note: T is Temperature sensor; ol =

Boreholes 2#-4# have the same distribution o

of the temperature sensors as borchole 1#, e




Qab Development of heat exchanger foundation pile
& considering its thermo-mechanical behaviour

We firstly proposed a reliable analytical solution both
considering the finiteness of heat source and difference of
thermal property in the molding process.

Hot water supply
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Electrical power
input: 666 GJ

Solar-assisted ground source heat pump system

Loss from storage

Loss from DHW 1 > Solar direct heating
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Thank you!




