

Sustainable Building Design and Renewable Applications

Dr. Lu Lin, Vivien

Associate Professor

Department of Building Services Engineering The Hong Kong Polytechnic University

- > Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- > Renewable energy applications

- Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- > Renewable energy applications

- Energy use in buildings accounts for about 92.7% of all electricity consumption according to statistics published in 2013
- > People spend about 80% to 90% of the time on indoor activities

Building sustainable design technologies

Renewable Applications

- To keep indoor environment comfortable while achieve energy saving, passive or active building designs can be adopted:
- Passive design use ambient energy sources, including daylighting, natural ventilation, and solar radiation.
- Active design use or create purchased energy to keep the building comfortable.
- Hybrid design use both energy sources

- > Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- > Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- > Renewable energy applications

- Over 90% of the population in HK lives in *high-rise domestic* buildings of 10 to 40 floors
- Public Rental Housing (PRH) provided accommodations for over 30% the local residents

We want the second strain the second strain the second strain term of te

• To estimate the uncertainty of annual energy consumption Mean = 31.09 Std. Dev. = 12.002 N = 1,000

• To determine the ranking of various design strategies

t2: Thermal Discomfort (hr)

- Energy performance including cooling and lighting
- Indoor environmental qualityincluding thermal comfort,lighting quality and ventilation.
- Non Sorting Genetic Algorithm II (NSGA-II) adopted to obtain Pareto frontier

- > Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- > Renewable energy applications

Nano-paints for window heat insulation

Buildings emitted 8.3 Gt carbon dioxide each year accounting for more than 30% of the greenhouse gas emissions in many developed countries.

• 2015/16 HKSAR Government ITF (UICP): Development of Novel High Dispersed Transparent Heat Insulation Paints for Glass (UIM/265)

Windows or curtain walls, taken as the daylighting structure of a building, is still suffering from the balance of thermal insulation and visible transparency.

Our ongoing ITF project

Novel High Dispersed Transparent Heat Insulation Paints for Glass

Problems for traditional coating

- 1. High cost (Foreign monopoly)
- 2. Bad transparence (Poor dispersion)
- 3. Solvent based coating (Environmental problems)

Project Objective

- 1. Independent research to reduce the cost (Break up foreign monopoly)
- 2. Good transparence (Stable colloid)
- 3. Water based coating (Environmentally friendly)

Thermal insulation coating

Size of ATO: 5nm

Size of FTO: 20nm

secondary particle size (in water): <200nm

Thermal insulation coating

Thermal insulation coating

Number of samples	Vis-Light Transmission	IR-Light Transmission	UV-Light Transmission
1	73	28	13
2	85	24	8
3	70	30	14
4	83	27	11
6	75	25	9
7	87	22	7
9	82	22	12

Insulation Performance of the Coating:

- Vis-Light Transmission: >75%
- IR-Light Transmission: <30%
- UV-Light Transmission:<15%

Self-cleaning coatings

Super-hydrophobic, θ (Lotus leaf)>150°

Super-hydrophilic, θ (clean glass)<10°

Super-hydrophobic self-cleaning glass

Super-hydrophilic self-cleaning glass

Low-cost self-cleaning nano-coating for curtain walls

Conventional self-cleaning glass curtain wall involves chemical vapour deposition and sputtering technologies.

A comparison between PV modules with and without self-cleaning coatings after one month's outdoor exposure.

- > Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- > Renewable energy applications

- > Introduction of building sustainable design
- Passive architectural design sensitivity analysis and optimization
- Green building nanomaterial development
- > Building energy efficient systems (Fluid mechanics and heat/mass transfer)
- **Renewable energy applications**

• Natural ventilated PV façade (experimental and numerical)

- Optimal installation orientation of PV modules
- Development of solar cells and PV product, etc.

The overall energy performance of BIPV facade:

- real-time power generation performance
- thermal performance
- natural lighting performance

l- double glass a-Si PV module
air inlet louver
air outlet louver
air-flow duct
sandwich insulation board
inward opening window
connect and support bar
ceiling

The potential PV electricity output is about 4674GWh, accounts for 10.7% of the total electricity use in 2014.

- Evaluating the PV-suitable roof-top areas by using remote sensing imagery;
- Rooftop extraction from remote sensing imagery is employed to estimate the utilization rate of urban roofs

Simulation and experiments of vertical and inclined boreholes

Development of heat exchanger foundation pile considering its thermo-mechanical behaviour

We firstly proposed a reliable analytical solution both considering the finiteness of heat source and difference of thermal property in the molding process.

Thermal vertical stresses distributions

Cracks may occur for long-term operation, and we need to explore its long-term operation with fatigue test to know its ultimate bearing capacity in the whole life-cycle.

