Elevator Modernization:

An Effective Way to Improve the Performance, Efficiency and Safety of Aged Elevators 針對升降機老化: 提升其性能、效率和安全性

Ir Louis Y. N. Yiu

Modernization Sales Engineering Manager

Mitsubishi Elevator Hong Kong Co. Ltd.

In Hong Kong, >20,000 Elevators being operated for over 20 years

User's Expectation

User's Expectations on Elevators:

- Riding Comfort
- ➢ Reliability
- Energy Performance/ Efficiency
- Traffic Handling Capacity
- Nowadays Safety Codes

Low Speed Elevator

High Speed Elevator

	Year		1970 ▼		1980 ▼	1990 ▼		2000 ▼	2010 ▼
	Control	Relay circuit				Microprocessor controlled			
Motor Drive			eonard M= Induction Moto G= DC generator DC MOTOR or Generator	Thyristo			/F)	AC POWER	
Power Device		Motor	Generator Set	Thyris	stor	Bypolar Transistor	IGBT		
Traction Machine	Motor	DC MOTOR				Induction Motor Synchronus M (Permanent Mac			nus Motor it Magnet)
	Mechanical Transmission	Ş	gearless			Helical gear	Gearles	ss	

	Riding Comfort		Reliability		Energy Efficiency		Traffic Handling Capacity	
Time	70's Tech.	Current Tech.	70's Tech.	Current Tech.	70's Tech.	Current Tech.	70's Tech.	Current Tech.
Technol ogy	AC-2	VVVF	Relay Type	Computerized Control	AC-2/ ACVV + Worm- gear + Induction Motor	VVVF + PM Gearless Motor	Relay type, non- program mable	Computeri zed, Al Logic
Charact eristics	Discrete and hard	Smooth and seamless	Contact type, breakdown easily	PCB type, static, less breakdown	Induction motor saturate, mech. trans, energy loss	V/f = Constant, gearless, energy efficient	Single logic	Rule-set optimizer, real time simulation
Related Compo nents	Motor Drive		Control Panel		Control Panel + Motor Drive + Traction Machine		Control Panel	

Modernization Scope

7

Modernization Scope

CM-2

- Traction machine
- Control panel
- Shaft signalling
- Door motor
- ➢ Travelling cable
- Indicators

Modernization Scope

CM-1

- Traction motor
- Control panel
- Shaft signalling
- Door motor
- ➢ Travelling cable
- Indicators

- 1. Elevator system design: cage weight + 50% rated capacity = weight of counterweight
- Under full load condition, cage side is heavier than counterweight side, motor is consuming energy when moving up but generating energy when moving down
- 3. Under no load condition, cage side is lighter than counterweight side, motor is consuming energy when moving down but generating energy when moving up

Project	Commercial Building A	Commercial Building B	Residential Building C	Residential Building D
Capacity	1800kg	1600kg	750kg	900kg
Speed	8.0m/s	6.0m/s	3.0m/s	3.5m/s
% Regenerative Energy (24 hrs measurement)	45.8%	43.4%	21.6%	27.7%

Definition of Percentage of Regenerative Energy:

Total energy generated in regeneration mode/ Total energy consumed in motoring mode

2BC (2 Buttons selective Collective)

Traffic Handling Capacity

OS-75 (Optimum Service)

- > Adopted in 1980's
- Demand Zones (in priority)
- Main floor up demand
- High zone down demand
- Low zone up demand
- Low zone down demand
- High zone up demand
- Dynamic assignment of zones

for a greener tomorrow

Traffic Handling Capacity

Performance results of each rule-set (average waiting time) **∑AI-2200C** Average waiting time (sec.) 30 Rule-set selected Rule-set 2 25 selected Adopted in late 20 lule-set 1990's and after 2000 Rule-set 1 15 Rule-set 2 Rule-set 3 10 Ideal rule-set Traffic demand selected 0 8:00 8:30 9:00 predication Time Ideal rule-set is selected Rule-set simulator every few minutes. Waiting time: 25 sec. Long-wait rate: 2.4% Walting time: 20 sec. Rule-set 2 is selected Long-wait rate: 1.2% Rule-set 2 The optimal rule-set is selected according to the simulation results (waiting time, etc.). Waiting time: 22 sec. Long-walt rate: 2.0% Simulations Simulation results

Cooperative Optimization Assignment

Traffic Handling Capacity

Destination Oriented Allocation System (DOAS)

Without DOAS

Cars make stops at every selected floor because destination floor is not considered for car allocation .

With DOAS

The individualized car allocation based on the destination floors leads to shorter travel time and fewer intermediate stops.

Safety Codes

Safety Codes

		Severit				
Frequency	I	II	III	IV		
	Nu	mber of Hazardo				
А						
В			30			Frequency: C A: Frequent B: Probable C: Occasional D: Remote E: Improbable F: Impossible
С		6, 25, <u>30</u> , 60	37, 46, 57		Severity: I: Catastrophic II: Critical	
C-D	70	3, 9, 15, 17, 19, 22, 23, 27, 40, 50, 56, 71	29, 45		III: Marginal	
D	1, 3, 7, 8, 12, 13, 14, 16, 17, 26, 27, 31, 32, 33, 34, 39, 40, 43, 50, 53. 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18, 21, 24, 41, 44, 47, 48, <u>52</u> , 63, 65	28, 42, 49, 61, <u>64</u>		IV: Negligible Priority Extreme	
D-E	35, 36, 51, 52, 68, <u>72,</u> 74	20, 38, 55, 67, 69, 73			High Medium	
E	10, 11, 24, 55, 73					
F					Low	

Conclusion

Thank you