

Easy Innovations to Tune-up Your BMS

Ir Paul Chan Senior Smart Building Manager of Smart Energy Connect

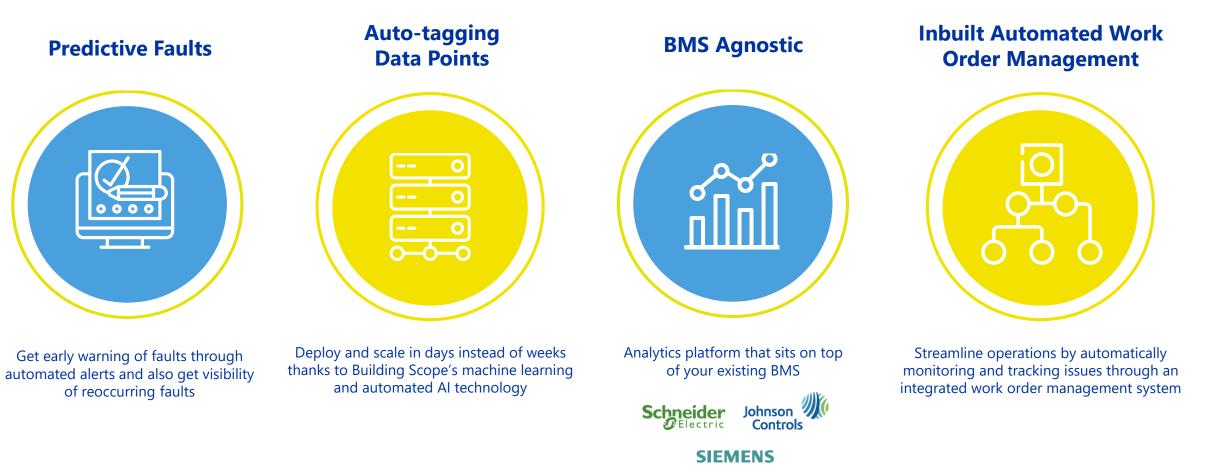
CLP 中電

Building Scope

Problems With Modern Day BMS

BMS focuses on control

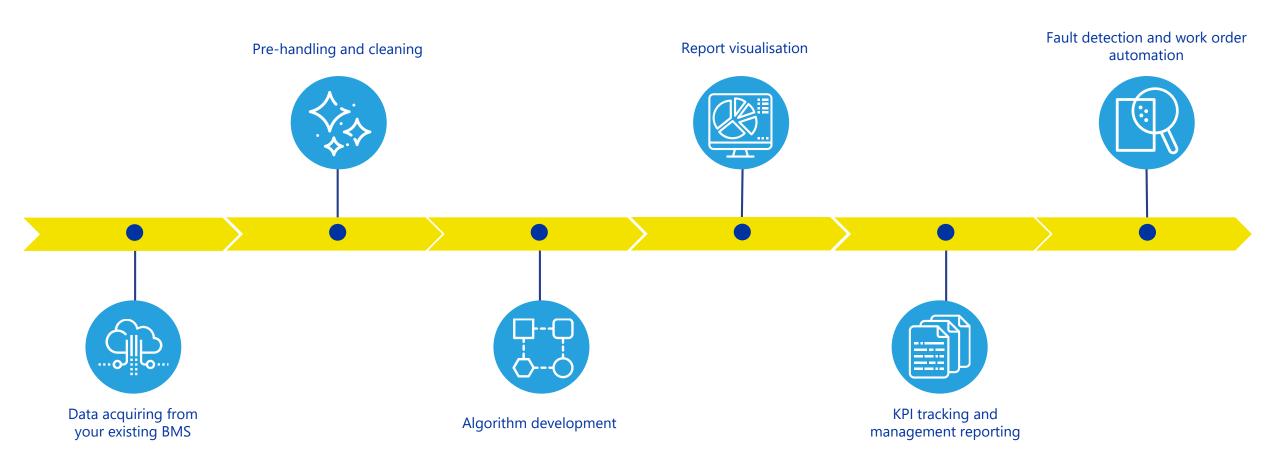
BMS is managed by engineers who need to focus on multiple goals: energy saving, fault detection and more


Facility managers need to deal with customer complaints

Value Proposition

ကာ

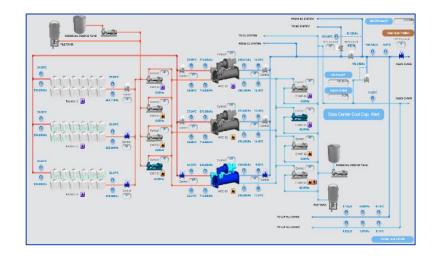
information rather than always being reactive


by client and fully automated

building health 24/7

 \sim

How CLP Building Scope Works



Energy and Equipment Management

Building analytics solution that helps to save energy through energy optimization at building level

Data and Device Visualisation

Energy savings can be achieved through identifying sub-optimal equipment. Access to all types of data without going onsite

 \bigcirc

Fault Detection and Diagnostics

2019-03-01 00:00 To	2019-03-19 17:30	learth														RO	0	niste V
Zone	Epipment								Prepare	w.								
25	FOU-2F-21																	
28	FOU-2F-212		1 1 1	11							1							10
3F	FOU-3F-28		1 11		1			100			1							11
3F	FCU-3F-29									1	1	11						11
3F	FCU-3F-210																	
3F	FCU-3F-Z11	11				1			11	11		11	111					
3F	FCU-0F-Z15							1			11							
3F	FCU-0F-Z16							11	11									
3F	FCU-3F-Z17							iui			Lİ.	11	11	11	111			11
3F	FOU-3F-218																	
3F	FOU-3F-221	1000	101	11		1		1			1				1			1
3F	FOU-SF-ZZ2-SE						11											
45	F0U-4F-23																	
45	FCU-4F-24A		1111					11										
4F	FCU-4F-24B			1.1				İİ.			1010	Û.						1
4F	FCU-4F-25							11							100			
47	FCU-4F-25																	
4F	FCU-4F-27	100				1								1		1	1	
47	FCU-4F-28		1.1.1.1				11	E.E.E	11		11	11	11	i t	11	11		11
4F	FCU-4F-Z10																	

Group detected faults into different categories, analyze energy waste and faults, and utilize ROI calculator

Reduce Complaints and Prioritise Repairs

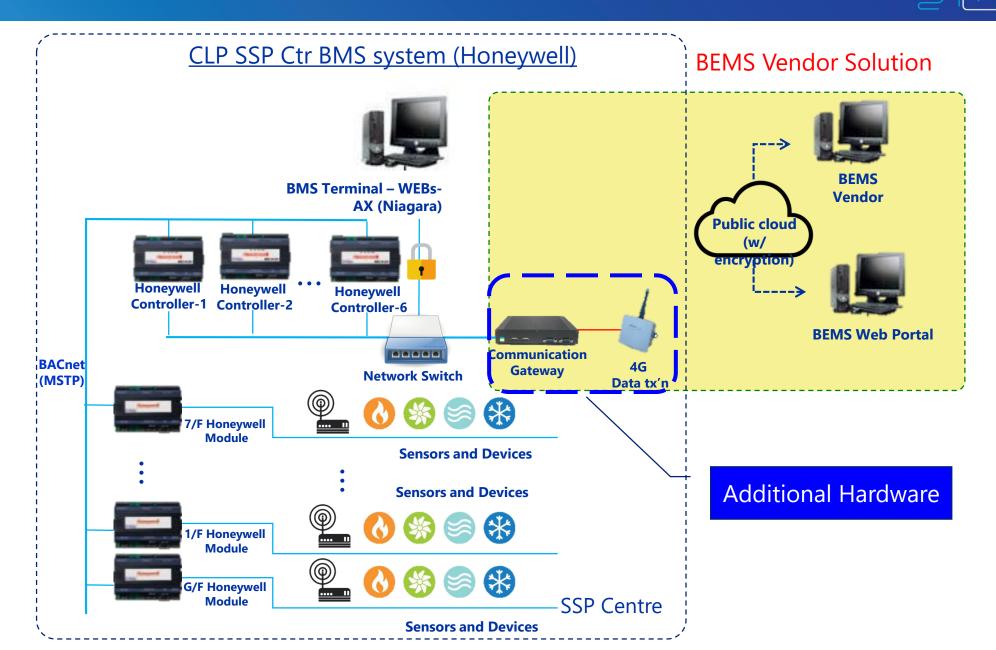
Through machine learning and predictive faults, facility managers can pre-empt failures and prevent occupant complaints \sim

Case Study – CLP Sham Shui Po Centre

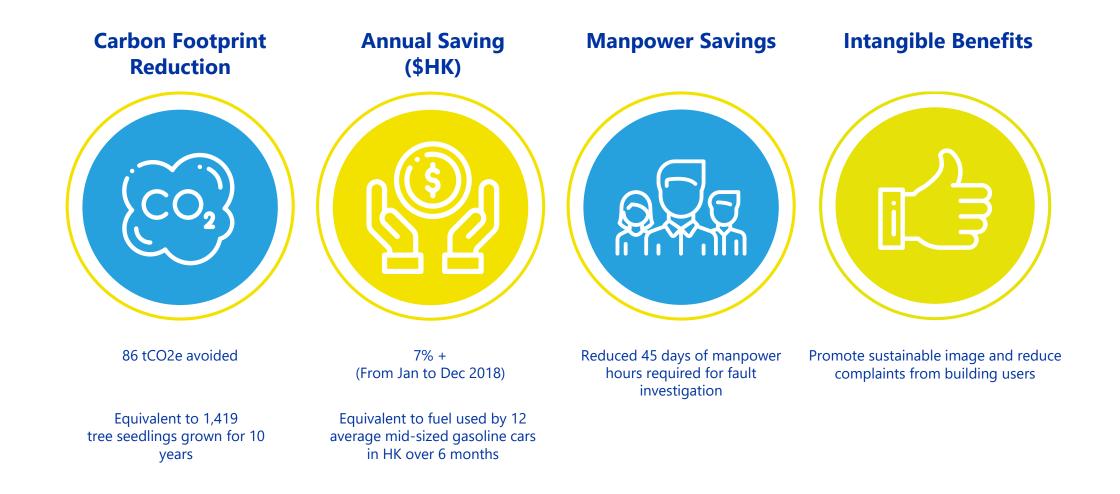
~1,600 Staff 7 Floors Data Centre

BMS

2,600 Data Points Honeywell


Results (12 months)

7% + Energy Saving


IIIII 自己力有關公司

BEMS Interface with Existing BMS

 \mathbb{C}

PlantPRO

Inefficient Operation of HVAC Equipment

 65% of HVAC energy consumption in buildings is consumed in the plant room alone

Lack of Automation and Control

 The manual control of chillers or fixed chiller sequencing systems often results in energy wastage and additional cost

System Downtime

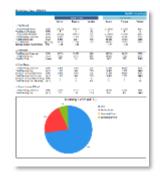
• The unexpected breakdowns of chiller units can lead to costly and ad-hoc repair

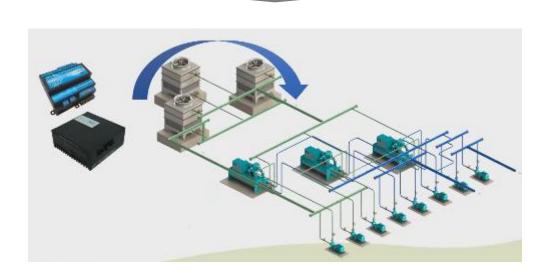
BMS Only Controls Specific Areas

• The lack of complete control over all functions and equipment does not allow for optimisation

What Is PlantPRO?

PlantPRO software is embedded on EDGE gateways hardware ready for on site integration



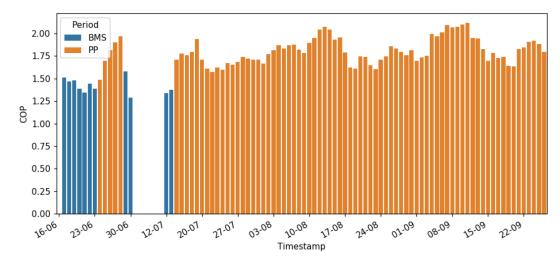

Hardware

- 1 X PlantPRO controller is required per chiller system
- Can control up to 10 chillers in a single circuit

Monthly Reports

PlantPRO has the ability to control the following equipment

Chillers – Control & Optimisation



- · Up to 10 units with the same circuit
- · Water cooled, air cooled and district cooling
- Chiller brand agnostic

Chiller Plant COP under PlantPRO control higher

than the COP under BMS control

A daily trend of COP (for both BMS control and PlantPRO control) is shown below.

PlantPRO Control & Optimisation

Future cooling load is calculated

The chosen chiller combination is applied

All chillers which can support the target cooling load are calculated

Power consumption of each chiller combination at the most desirable load point is calculated (including pump power)

The most optimum load point of each chiller which can satisfy the target cooling load is calculated

Pumps – Control & Optimisation

- Primary chilled water pumps
- Secondary chilled water pumps
- Condenser water pumps

Week Starting	Actual Power Consumption (kWh)	Predicted Power Consumption (from baseline) (kWh)	Weekly Energy Savings (kWh)	Energy Savings (%)		
28/06/2020	28 <mark>,</mark> 858	3 7 ,699	8,841	23.5%		
19/07/2020	30,004	38,429	8,425	21.9%		
26/07/2020	41,462	54,95 7	13,495	24.6%		
2/08/2020	40,86 7	52,834	11,96 7	22.7%		
9/08/2020	35,649	46,617	10,968	23.5%		
16/08/2020	34,585	50,560	15,9 7 5	31.6%		
23/08/2020	34,09 7	48,051	13,954	29.0%		
30/08/2020	32,604	43 ,7 30	11,126	25.4%		
6/09/2020	3 7 ,382	50,153	12, 77 1	25.5%		
13/09/2020	33,139	45,151	12,012	26.6%		
20/09/2020	36,180	45,561	9,381	20.6%		
27/09/2020	31,383	3 7, 869	<mark>6,4</mark> 86	17.1%		

PlantPRO Control & Optimisation

Variable Primary Flow Control

Traditional System

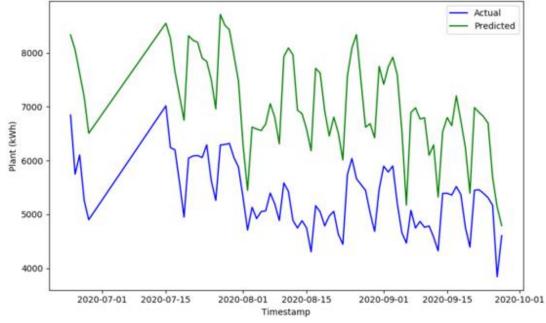
Directly control pumps to the system differential pressure and rely on the bypass valve to ensure minimum flow through the chiller

· Can be difficult to tune to ensure stable operation at all times

PlantPRO

Control to design chiller flow and reset the design chilled water flow setpoint based on the trend of the field differential pressure

• Ensure chiller flow only varies between acceptable limits and there is no over reliance on the bypass valve to maintain sufficient flow level.


Cooling Towers – Control & Optimisation

Cooling Towers

2020 PP Period 2nd order regression using Temperature, Humidity, Season and Day of The week

PlantPRO Control & Optimisation

Fan Efficiency and Fan Control

A small reduction in fan speed by <u>PlantPRO</u> results in a large energy saving

Example: A 10% fan speed reduction equates to a 30% reduction in power consumption

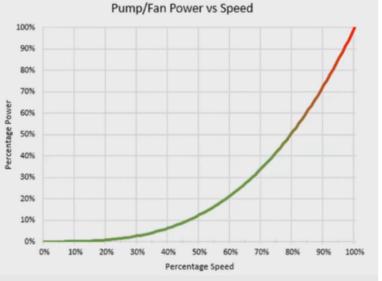
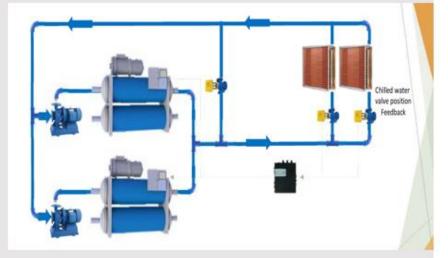
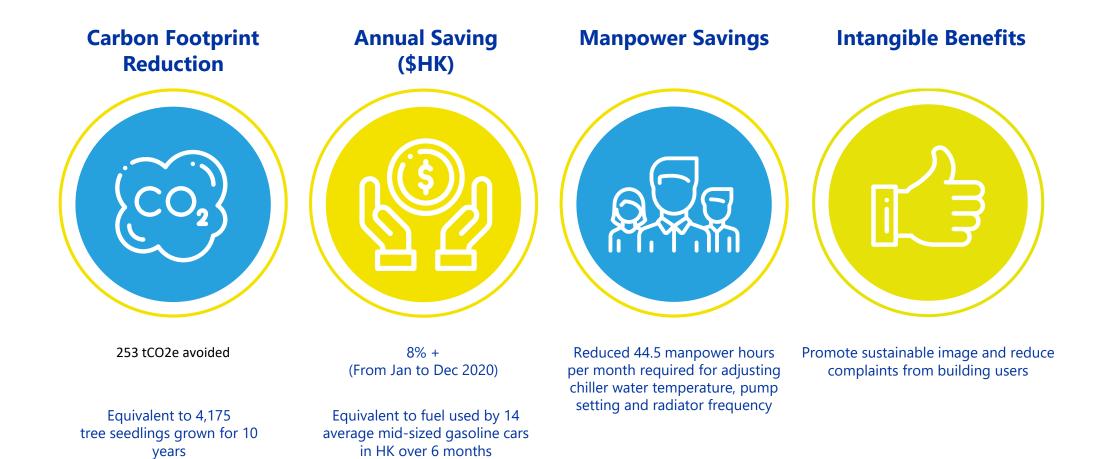


Figure 6 - Daily Energy Prediction VS Actual Daily Energy

Cooling Towers – Control & Optimisation

Valves


PlantPRO Control & Optimisation


Chilled water valve open percentage

PlantPRO optimises the chilled water valve open percentage.

A low average chilled water valve open percentage indicates low field load, which raises the chilled water set point

Q&A

Thank You!

